

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS) pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

COURSE DESCRIPTION CARD - SYLLABUS

Course name						
Molecular modeling of biomole	cules					
Course						
Field of study		Year/Semester				
Bioinformatics		2/4				
Area of study (specialization)		Profile of study				
-		general academic				
Level of study Second-cycle studies Form of study		Course offered in Polish Requirements				
				full-time		elective
				Number of hours		
Lecture	Laboratory classes	Other (e.g. online)				
15	15	0				
Tutorials	Projects/seminars					
0	0					
Number of credit points						
2						
Lecturers						
Responsible for the course/lecturer: Responsible for the course/lecturer:						
dr inż. Łukasz Ławniczak						
e-mail: lukasz.lawniczak@put.p	oznan.pl					
phone +48 61 665 35 34						
Faculty of Chemical Technology						

Berdychowo 4, 60-965 Poznan

Prerequisites

At the beginning of the course, the student should have basic knowledge in the field of molecular modeling (e.g. creating simple and complex molecule models, geometric optimization) and structureenergy relations (e.g. the influence of conformational changes and hydrogen bonds on the energy of the system). In addition, the student should have practical skills in using molecular modeling software acquired during the first-cycle studies.

Course objective

The aim is to ensure that students acquire theoretical and practical knowledge in the field of molecular modeling of biological macromolecules. The specific goals are to familiarize students with the methods

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS) pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

of construction and modification of complex biomolecules, as well as the possibility of predicting their properties using in silico methods.

Course-related learning outcomes

Knowledge

K_W03 the graduate knows and understands in detail the issues of selected sciences useful for modeling biological processes P7U_W

K_W04 the graduate knows and understands the methods, techniques and tools used in the process of solving complex bioinformatics tasks, mainly of an engineering nature P7U_W

K_W09 the graduate knows and understands detailed issues in the field of modeling and analysis of biological systems based on solid theoretical foundations P7U_W

Skills

K_U01 the graduate is able to fluently use and integrate information obtained from literature and electronic sources, in Polish and English, to interpret and critically evaluate it P7U_U

K_U02 the graduate is able to draw conclusions, clearly formulate and exhaustively justify his opinions on the basis of data from various sources P7U_U

K_U06 the graduate is able, under the supervision of a research tutor, to plan and perform research tasks using analytical, simulation and experimental methods P7U_U

Social competences

K_K01 the graduate is ready to learn, inspire and organize the learning process of others throughout life P7U_K

K_K03 the graduate is ready to define priorities for the implementation of a task defined by himself or other P7U_K

K_K08 the graduate is ready to systematically update his knowledge in the field of biology and computer science and to see the possibilities of its practical application P7U_K

Methods for verifying learning outcomes and assessment criteria

Learning outcomes presented above are verified as follows: Lecture:

After the end of the lecture series, the knowledge of students will be verified based on a written exam with 5 open questions regarding theoretical and practical issues. A passing grade is obtained when the number of points is greater than 50% of the accepted maximum.

Laboratories:

During the series of laboratory classes, the knowledge of students will be verified based on sthrough the implementation of program tasks. At the end of the series of laboratory classes, a practical test will be

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS) pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

conducted on the knowledge of molecular modeling methods, covering three tasks. A passing grade is obtained when the number of points is greater than 50% of the accepted maximum.

Programme content

The course covers the following theoretical issues: structures of biocompounds (order, stabilization by bonds), formation of biopolymer structures (monomer structures, influence on the conformation of biological oligo- and polymers), computer-aided analysis of infrared spectra (analysis and interpretation of model and real results), practical application of periodic box functions (simulation of the behavior of compounds in the environment of a solvent).

In addition, classes regarding the practical knowledge of the basic principles of molecular modeling will be carried out - analysis of key geometric parameters in advanced biomolecule structures, differences resulting from the level of molecular modeling in the context of macrostructures and multiparticulates, computer simulations and experimental data in the context of structural analysis, the interaction of macrobioparticles with selected compounds with a significant biological role.

Teaching methods

The lecture includes a multimedia presentation of the discussed content and involving students in scientific discussions.

Laboratories include training in occupational health and safety, the use of basic laboratory equipment, basic methods of analysis and purification of organic compounds as well as practical implementation of syntheses along with keeping a laboratory journal.

Bibliography

Basic

1. J.Clayden, N. Greeves, S. Warren, P. Wothers, Chemia organiczna, tom I, II i III, WNT, Warszawa 2009.

2. J. Gawroński, K. Gawrońska, K. Kacprzak, M. Kwit, Współczesna synteza organiczna, PWN, Warszawa

Additional

1. J. Skarżewski - Wprowadzenie do syntezy organicznej, PWN, Warszawa 1999

2. M.B. Smith, J. March, Advanced Organic Chemistry, Reaction, Mechanism and Structure, J.Wiley &

Sons, New Jersey 2007

3. A.I. Vogel, Preparatyka organiczna, WNT, Warszawa 2006

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS) pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

Breakdown of average student's workload

	Hours	ECTS
Total workload	50	2,0
Classes requiring direct contact with the teacher	30	1,5
Student's own work (literature studies, preparation for	20	0,5
laboratory classes/tutorials, preparation for tests/exam) ¹		

¹ delete or add other activities as appropriate